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Wide-ranging measurement methods are applied on the assembly lines of production 
plants across the country. The ever rising bar of quality demands rejection of defective 
products at an assurance level not imagined in years past. The future of defect detection is 
perhaps in the identification of assembly line units that are not yet defective, but would 
otherwise be expected to fail prematurely in the hands of the consumer.  
 
A production test activity once dominated by mechanically operated micrometers now is 
characterized by computer controlled measurement devices and data acquisition and 
analysis systems. Yet, many production plants have not taken advantage of newly 
developed methods of dynamic measurement and signal processing. 
 
This article suggests dynamic testing as a means of detecting not only on-the-line defects, 
but also the potential for premature failure after delivery to the customer. 
 
 
The Dynamic Measurement Concept 
 
It has been found that a large variety of products possess intrinsic dynamic characteristics 
that provide a signature of the state of their health. Sometimes these characteristics are 
chemical, optical, electrical, magnetic or mechanical in nature. Regardless, there is much 
commonality in the basic measurement and analysis process applied in assessing the state 
of product health. 
 
The key feature of the dynamic process is the integration of fast, continuous response 
measurement devices, high-speed data acquisition, advanced time and frequency domain 
signal processing, data analysis and production line disposition and control. Further, 
integration on the analysis side should merge statistical analysis methods with techniques 
of time and frequency domain finger printing. 
 
The present article will focus on the use of mechanical vibration characteristics for rating 
product health. However, methods described here apply to measured parameters 
associated with other kinds of product characteristics. 
 
 
Single Degree Of Freedom Vibration Theory 
 
Most products, from small to large… from components, computers, TV sets, appliances, 
motors and equipment to vehicles, aircraft, bridges and buildings, are rich in vibration 
characteristics which can indicate their state of health. The reason is that, in a mechanical 
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dynamical sense, these products are all composed of quite a large number of masses, 
springs and dampers. And every combination of a mass, spring and damper has 
associated with it a resonance frequency and a mathematical characteristic we call the 
SDOF FRF (Single-Degree-Of-Freedom Frequency Response Function). The 
combination of many masses, springs and dampers within a product results in many 
resonance frequencies along with the superposition of their FRF’s. The FRF resulting 
from this superposition manifests a myriad of markers useful for assessing product 
integrity. 
 
The FRF is fundamental to the understanding of the richness of intrinsic vibration 
characteristics of a product. The subject of vibration measurements has been presented in 
three recent issues of the Sensors magazine (February, March and April) and is 
recommended reading for the understanding of our present application. The FRF is a 
mathematical function derived using measurements of an applied dynamic force along 
with the vibratory response motion. The response motion could be displacement, velocity 
or acceleration.  
 
The FRF concept can be understood in association with the simple mass, spring and 
damper diagrammed in Figure 1. A vibratory force, f(t), is applied to the mass, inducing 
response vibration displacement, X(t). The applied force is typically a random time 
function having a continuous spectrum over the frequency range of interest. The FRF 
results from the solution of the differential equation of motion for the SDOF system. 
 

                          

                  a)                                b) 
 
Figure 1.  A vibratory force is applied to a simple mass, 
spring and damper system, a). The differential equation of 
motion is developed from the free-body diagram , b). This 
equation describes the vibration displacement response of 
the system. 
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The differential equation of motion for the SDOF system is obtained by setting the sum 
of forces acting on the mass equal to the product of mass times acceleration (Newton’s 
Second Law): 
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where f(t) represents the time dependent force (LB), x is the time dependent displacement 
(inch), m is the system mass, k is the spring stiffness (LB/inch) and c is the viscous 
damping (LB/in/sec).  
 
The FRF is a frequency domain function, and we derive it by first taking the Fourier 
Transform of equation (1).  One of the benefits of transforming the time dependent 
differential equation is that a fairly easy algebraic equation results, owing to the simple 
relationship between displacement, velocity and acceleration in the frequency domain. 
These relationships lead to an equation that includes only the displacement and force as 
functions of frequency. Letting F(ω) represent the Fourier Transform of force and X(ω) 
represent the transform of displacement, 
 
                                                  ( ) ( ) ( )− + + =ω ω ω ω2m ic k X F                                        (2) 
 
The circular frequency, ω, is used here (radians/sec). The damping term is imaginary, due 
to the 90-degree phase shift of velocity with respect to displacement for sinusoidal 
motion. Now, the FRF is obtained by solving for the ratio of the displacement Fourier 
Transform to the force Fourier Transform. The FRF is usually indicated by the notation, 
h(ω). 
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After rationalizing the denominator and defining some key parameters in a more popular 
form, equation (3) is written as 
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This form of the FRF allows one to recognize the real and imaginary parts separately. 
The new parameters introduced in equation (4) are the frequency ratio, β = ω/ωr, and the 
damping factor, ζ. The understanding of these parameters becomes clearer when 
considering two different ways of inducing vibration on the SDOF system.  Figure 2 
illustrates the vibration behavior under forced sinusoidal vibration with a continuously 
increasing frequency compared to vibration resulting from a sudden impact. 
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The upper diagram of Figure 4 depicts a process in which a computer controlled 
electrodynamic shaker impresses a vibration force that slowly sweeps up from a low 
frequency to a high frequency. The mass and spring respond with amplified vibration as 
the shaker sweeps into that special frequency range of system resonance. The level of 
vibration response when forced at the resonance frequency, ωr, depends on the amount of 
damping as quantified by the damping constant, C. The damping factor, ζ, is the ratio of 
actual damping, C, to the damping value known as critical damping, Cc. A system with ζ 
equal to or greater than 1.0 will not vibrate freely. Typical product values of ζ range from 
.01 to .05, except for products specifically designed with high damping, ζ > 0.1, to inhibit 
vibration.  
 
The lower diagram of Figure 2 reflects that same resonant property of the spring-mass 
system.  The mass and spring are shocked into vibration at the system resonance 
frequency. The vibration dies away with time at a decay rate dependent on the damping 
constant, C. 
 

      
 

Figure 2.  Vibration response of a SDOF system 
to two different excitation processes. The upper 
diagram shows response to an applied sine sweep 
forcing function. The lower diagram shows 
response to a hammer impact force. 
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Actually, either of the two displacement-time functions plotted in Figure 2 could be 
derived from the differential equation (1). Just enter either the sine sweep forcing 
function or the hammer impact force for f(t) in equation (1) and solve for the 
displacement response. But, an efficient use of the data from either of the vibration 
processes would be to Fourier Transform force and displacement measurements and 
compute the FRF. This result is sketched in Figure 3. 
 
 

                       
 
Figure 3.  The FRF (Frequency Response Function) plot for 
the SDOF of Figure 1. The FRF could be computed from 
the Fourier Transform ratio of X(ωω)/F(ωω) using data from 
either of the Figure 2 vibration processes. The FRF peaks at 
the system resonance frequency, ωωr. 

 
 
The FRF of Figure 3 directly reflects the sine sweep process. The system response is 
fairly constant throughout the low frequency range and rises to a peak at the resonance 
frequency, ωr. The resonance frequency can be shown to depend on the system mass and 
stiffness: 
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Multiple Degree Of Freedom Systems 
 
There is a reason for this extensive excursion into SDOF vibration theory. It is because 
the most complicated structure, having a large number of masses and springs and 
resonance frequencies can be understood as a superposition of simple SDOF systems. 
Such a complicated system is thought of as a MDOF system (Multiple-Degree-Of-
Freedom system) having many modes of vibration. The resulting complicated FRF can be 
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understood as a mathematical summation of SDOF FRF’s, each having a resonance 
frequency, damping factor, modal mass, modal stiffness and modal damping ratio. 
 
A complicated structure need not have distinct lumped masses and springs to be analyzed 
as a MDOF system. Product structural elements such as beams and panels represent 
MDOF components, given their many different modes of bending. Figure 4 summarizes 
the way in which products may be visualized as a superposition of SDOF modal 
components, even though lumped masses and springs are not involved. A cantelever 
beam serves as the example, exhibiting unique deformation patterns called mode shapes. 
The beam can be made to vibrate freely in any of the individual mode shapes, and again, 
associated with each mode shape is a resonance frequency, modal mass, modal stiffness, 
modal damping and a modal FRF. 
 
 
 

   
     

Figure 4.  A cantelever beam exhibits distinct vibration deformation 
patterns. Each deformation pattern, called a mode shape, behaves like a 
SDOF component. The measured FRF (upper right corner), X2/F1, is 
understood as a superposition of the SDOF FRF’s.  
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A useful thing to know about vibrating structures is that they can only vibrate using these 
unique mode shapes. Any arbitrary deformation produced in a vibration process (such as 
the upper left corner example of Figure 4 can only occur if it is comprised of the 
superposition of the natural mode shapes. This understanding, along with knowledge of 
the way in which the presence of specific vibrating mode shapes are manifest in 
measured data, arms one with valuable tools for establishing strategies for product defect 
detection. 
 
 
Mode Shape Mathematics 
 
A powerful mathematical concept presents mode shapes as a vehicle for transforming 
vector components like displacement, velocity, acceleration and force from their natural 
physical coordinate system to an abstract modal coordinate system. A matrix of mode 
coefficients, ψjr, represents all of the mode shapes of interest of a structure. The mode 
coefficient index, j, locates a numbered position on the structure (a mathematical degree 
of freedom) and the index, r, indicates the mode shape number. Modes are numbered in 
accordance with increasing resonance frequencies. The vector component coordinate 
transformation from abstract modal coordinates, X, to physical coordinates, X, is 
 
                                                         { X } = [ Ψ ]{ X }                                                    (6) 
 
Each column in the [ Ψ ] matrix is a list of the mode coefficients describing a mode 
shape. Figure 4 shows the modal displacements, X1, X2, X3 and X4, defined at the end of 
the cantelever beam for each mode shape. As an example of the coordinate 
transformation, we see that the physical displacement at position number two, X2 (see 
Figure 2 upper left corner), is equal to the sum of the modal displacements weighted by 
the corresponding mode coefficients. 
 
Now, any system having mass, stiffness and damping distributed throughout can be 
represented with matrices. Using such matrices a set of differential equations can be 
written for the Figure 2 cantelever beam, for example. The frequency domain form is 
 

                                             − + + =ω ω2 M i C K X Fl q l q                                         (7) 

 
Displacements and forces at the numbered positions on the structure appear as elements 
in column matrices. The mass, damping and stiffness matrix terms are usually combined 
into a single dynamical matrix, [ D ]: 
 
                                                             [ D ]{ X } = { F }                                                 (8) 
 
A complete matrix, [ H ], of FRF’s would be the inverse of the dynamical matrix. Thus, 
we have the relationship, 
 
                                                            { X } = [ H ]{ F }                                                  (9) 
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Individual elements of the [ H ] matrix are designated with the notation, hjk(ω), where the 
j index refers to the row (location of response measurement) and the k index refers to the 
column (location of force). A column of the [ H ] matrix is obtained experimentally by 
applying a single force at a numbered point, k, on the structure while measuring the 
response motion at all n points on the structure, j = 1,2,3…n.  The  [ H ] matrix 
completely describes a structure dynamically. A one-time measurement of the [ H ] 
matrix defines the structure for all time… until a defect begins to develop. Then subtle 
changes crop up all over the [ H ] matrix. From linear algebra we have the transformation 
from the [ H ] matrix in modal coordinates to the physical [ H ] matrix. 
 
                                                       [ H ] = [ Ψ ][ H ][ Ψ ]T                                             (10) 
 
This provides the understanding of a measured FRF, hjk(ω), as the superposition of modal 
FRF’s. Equation (10) may be expanded for any element of the [ H ] matrix (selecting out 
a row and column) to obtain the result, 
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Equation (11) is illustrated graphically in the upper right corner of Figure 2. The solid 
FRF curve, h21, is shown as an algebraic summation of the weighted modal FRF’s 
adjacent to each of the beam mode shapes in the figure. The resonance frequency of each 
mode of vibration depends on the effective modal mass and effective modal stiffness 
associated with each SDOF mode shape. The formula for modal resonances is the same 
as equation (5): 
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The modal damping fraction, ζr, also depends on modal mass and modal stiffness as well 
as the modal damping constant, cr.  This is because the critical damping value is a 
function of modal mass and modal stiffness. 
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Another useful FRF parameter is the phase angle, indicated by the real and imaginary 
parts of equation (11). The phase angle function of frequency, θjk(ω), associated with 
FRF hjk(ω) is 
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The vibration theory seems overwhelming at times. Nevertheless, the multiplicity of 
modal parameters within a single FRF can now be appreciated as providing such a rich 
source of indicators of product health. 
 
 
Potential Failure Detection 
 
There is a particularly attractive feature of dynamic defect detection using vibration 
measurements. It is the possibility of adjusting rejection criteria for identification of units 
having statistically significant potential for failure. 
 
Mode shape definition, resonance frequency and the modal damping factor are very 
sensitive to the mechanical condition of a product. These parameters are so sensitive to 
the state of a product that is not possible to manufacture two units with precisely identical 
FRF’s. Slight differences between one unit and another will manifest as deviations 
between their FRF’s. 
 
For example, a slightly loosened fastener can affect those mode shapes having large 
mode coefficients in the vicinity of the fastener. Notice in the FRF equation (11) the 
effect of mode coefficients on the measured FRF. The loosened fastener will also effect 
modal stiffness in those modes, which, by equation (12) changes the resonance 
frequencies. Deviations in mode coefficients and resonance frequencies show up as shifts 
in FRF amplitude, locations of peaks and phase angle. The damping factor, ζ, may be 
effected as a result of increased friction in loose joints. This shows up in the FRF as a 
broadening of peaks as ζ increases. Figure 5 overlays two FRF’s, differing as a result of a 
slight change in just two of the structure modes. Two mode coefficients have been altered 
along with a slight shift in the two resonance frequencies and damping factors. 
 
While an exact theory underlying the relevance of vibration testing to failure potential is 
not fully developed, the concept is based on fatigue theory. It has been suggested that the 
fatigue life of certain components can be correlated with their damping factor and 
resonance frequency. This would mean that the future operating life of some components 
could be estimated by measuring these modal parameters. On this basis limits could be 
established for rejecting units not expected to perform over a normal life span for the 
product. 
 
Generally speaking, there are two broad defect detection strategies: 1) Theory-Based and 
2) Phenomenological. The theory-based strategy attacks the problem with full knowledge 
of the product dynamical characteristics. The phenomenological strategy employs the 
same measurement and signal processing methods, but without knowledge of the system 
model. Both strategies provide the possibility of detecting the potential for premature 
failure. 
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Figure 5.  Comparison of FRF’s for a baseline unit under 
test and a defective unit. Two modes have been affected 
by the defect, resulting in shifts in resonance frequencies, 
damping ratios and mode coefficients. 

            
 
 
 
 
 
Theory-Based Defect Detection Strategies 
 
The theory-based strategy includes experimental development of the global modal 
parameters, ωr, mr, kr and ζr along with the physical and modal FRF matrices,  [ H ] and  
[ H ], and the mode shape matrix, [ Ψ ]. A standard process yielding this body of data is 
referred to as a modal test. The development of laboratories for performing modal tests is 
becoming more and more common in industry. 
 
Also, Finite Element Modeling is often pressed into service as part of the strategy. 
Experimental modeling and analytical modeling provide a very effective approach when 
the two technologies are properly coordinated. The two methods are complimentary in 
many ways. Each has advantages and disadvantages when compared to the other. 
 
Having an understanding of the modal characteristics of a product enables the 
development of multiple failure mode strategies. The mechanisms associated with 
different failure modes can be understood in relation to the various mode shapes and 
resonance frequencies of a product. 
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The theory-based strategy lends itself to strategically placed measurement devices 
(typically accelerometers or laser vibrometers). A quick glance at the mode shapes for the 
cantelever beam in Figure 4 indicates the end of the beam assures data that will involve 
every mode of the structure. An accelerometer positioned at a zero crossing for a 
particular mode shape will fail to produce any information about the health of that mode. 
The mode coefficient at that point would be zero and would remove that mode from the 
modal FRF summation as seen in equation (11). 
 
Assembly line vibration testing may involve an active operating product or a passive 
product. An operating electric motor provides its own vibration excitation. In this case 
the theory-based strategy provides an understanding of the modal forces generated by the 
motor. Having a modal model enhances the development of a test strategy. 
 
A major pitfall in the implementation of the vibration defect detection method has to do 
with assembly line fixture design. Without an understanding of the way the unit under 
test is dynamically coupled to the fixture, the whole process could fail. Some plants have 
been found rejecting good units based on vibration measurements effected largely by 
fixture dynamics. This problem is easily avoided with a theory-based strategy in which 
all system characteristics, including fixture, are understood up front. 
 
The analytical approach to defect detection requires special facilities and human 
resources. The technology is costly to implement and maintain in-house. Companies 
often prefer to rely on outside consultants to initiate the process and bring the assembly 
line into a routine production operation. Once the process is in place for a particular 
product, little specialization is required as long as the product is not subject to redesign. 
 
 
Phenomenological Strategy     
 
This strategy takes advantage of the dynamic characteristics of the product without really 
understanding the behavior. Dynamic measurement levels may be established across the 
frequency spectrum for an adequate statistical sample of good units. Then, out-of-
tolerance levels are established as a basis for rejecting defective or potentially defective 
units. Plants engaging this strategy usually go through an extended period of tweaking 
failure criteria and limits before reaching a stable pass-fail process. 
 
 
Acceptance Test Design 
 

• Data Pool Organization 
• Test Case Organization 
• Statistical Parameter Selection 
• Pass/Fail Limits 
• Reject Options 
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Types Of Measurements 
 

• Vibration – Accelerometers, Laser Vibrometers, Induction Pickups, 
Capacitance Pickups 

• Sound – Microphones 
• Voltage/Current – Current Probes, Shunts, Wide Band DC High Gain 

Amplifiers 
 
 
 
Integrating With The Assembly Line 
 

• Interfacing To PLC’s 
• Interfacing With SPC 
• Test Station Design 
• Operator Level Control 
• Automated Product Identification and Test Case Selection 

 
 
Database Management And Production Control 
 

• Product Unit Data Access 
• Statistical Analysis Methods 
• Production Reporting, Control Charts, Pareto Charts 


